An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.

نویسندگان

  • Deepa Srikanta
  • Shurjo K Sen
  • Charles T Huang
  • Erin M Conlin
  • Ryan M Rhodes
  • Mark A Batzer
چکیده

The Alu family is a highly successful group of non-LTR retrotransposons ubiquitously found in primate genomes. Similar to the L1 retrotransposon family, Alu elements integrate primarily through an endonuclease-dependent mechanism termed target site-primed reverse transcription (TPRT). Recent studies have suggested that, in addition to TPRT, L1 elements occasionally utilize an alternative endonuclease-independent pathway for genomic integration. To determine whether an analogous mechanism exists for Alu elements, we have analyzed three publicly available primate genomes (human, chimpanzee and rhesus macaque) for endonuclease-independent recently integrated or lineage specific Alu insertions. We recovered twenty-three examples of such insertions and show that these insertions are recognizably different from classical TPRT-mediated Alu element integration. We suggest a role for this process in DNA double-strand break repair and present evidence to suggest its association with intra-chromosomal translocations, in-vitro RNA recombination (IVRR), and synthesis-dependent strand annealing (SDSA).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins.

Retrotransposons, specifically Alu and L1 elements, have been especially successful in their expansion throughout primate genomes. While most of these elements integrate through an endonuclease-mediated process termed target primed reverse transcription, a minority integrate using alternative methods. Here we present evidence for one such mechanism, which we term internal priming and demonstrat...

متن کامل

Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome

LINE-1 elements (L1s) are a family of highly successful retrotransposons comprising approximately 17% of the human genome, the majority of which have inserted through an endonuclease-dependent mechanism termed target-primed reverse transcription. Recent in vitro analyses suggest that in the absence of non-homologous end joining proteins, L1 elements may utilize an alternative, endonuclease-inde...

متن کامل

The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair

Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic str...

متن کامل

The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition

Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a "copy-and-paste" mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3' DNA flap structur...

متن کامل

Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genomics

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2009